
Modernising 
Legacy Perl

Peter Edwards, Talisman Technology
https://www.talisman.tech/

https://linkedin.com/in/peteredwards/
http://dragonstaff.co.uk/perl/

PerlKohaCon, Helsinki Aug 15th 2023

For Commercial Financial/Recruitment 
Company Software

https://www.talisman.tech/
https://linkedin.com/in/peteredwards/
http://dragonstaff.co.uk/perl/


Peter - Introduction

Been using perl since it was first released, and using 
Unix since 1984.  Worked in Commercial, Education, 
Media, International Public Relations:
Open University, BBC Future Media and World Service, British Council.
Procured Koha LMS for British Council library, Lahore, Pakistan, 2016.

Spent a lot of time at Talisman Tech writing 
perl CGI web programs in early 2000s.
Rejoined in 2017 as CTO to modernise the 
company, codebase and products.

Speaking at first Kiev Perl Mova 
Conference in 2008

British Council, Beijing 2013

https://www.britishcouncil.org/contact/press/new-libraries-enhance-uk-pakistan-relationship
https://www.britishcouncil.pk/library/about/lahore


Talk - What we’ll cover

We'll look at crufty* old perl, and see how it can be modernised
in a real world case. 

How can I go from apache 1/mod_perl 1 web server with CGI and perl 5.10.1

to Plack with PSGI and perl 5.36 and a modern Web site service environment? 

It can be done!

* Cruft is a jargon word for anything that is left over, redundant and getting in the way. It is used particularly for defective, superseded, 
useless, superfluous, or dysfunctional elements in computer software. https://en.wikipedia.org/wiki/Cruft

https://en.wikipedia.org/wiki/Cruft
https://en.wikipedia.org/wiki/Cruft


What have we got in 2019?

RS-232 plug box for wiring VDU green screen 
terminals to Unix servers. Finally removed from 
our machine room last week (2023-08-06)



Talisman Web
Recruitment CRM/Pay and Bill/Accounts

● Red Hat Enterprise Linux 7
● Round trip HTML 4. Post a 

form, whole page of HTML 
comes back.

● CGI protocol from apache 
web server

● Frameset and frames (!)
● Apache 2 system perl 5.16
● Apache 1 mod_perl 5.10.1



2019

● Proxy via Apache 2 front to Apache 1 mod_perl backend perl 5.10.1
● Written with perl 5.005 then perl 5.008, and MySQL 3 database.
● Mixture of legacy perl, some okay with ‘use warnings’, some written like C, 

or BASIC and not.  Some “green screen” 4GL code and C-ISAM database.
● A decent business database object layer. We can build on that.
● Some badly behaved scripts have to run in perl exec CGI mode so Perl exit() 

does the garbage collection :-(  Runs from Apache 2
● Majority of code runs under mod_perl1 compiled with apache1 web server.
● On-premise servers



2019

● Proxy via Apache 2 front to Apache 1 mod_perl backend perl 5.10.1
● Written with perl 5.005 then perl 5.008, and MySQL 3 database.
● Mixture of legacy perl, some okay with ‘use warnings’, some written like C, 

or BASIC and not.  Some “green screen” 4GL code and C-ISAM database.
● A decent business database object layer. We can build on that.
● Some badly behaved scripts have to run in perl exec CGI mode so Perl exit() 

does the garbage collection :-(  Runs from Apache 2
● Majority of code runs under mod_perl1 compiled with apache1 web server.
● On-premise servers



Where would we like to get to?
Customer wants

● Modern design and UX: ReactJS
● Get rid of the old green screen 4GL programs
● Scalable service
● Mixture of on-premise and cloud computing options with 

integrations to third parties
● Database replication and at rest encryption
● Single Sign On



Where would we like to get to?
Talisman company wants

● Supportable
● Doesn’t break existing production quality service
● Modern architecture: 

ReactJS front end and microservice API backend
● Unit tests, quality tools
● Documentation
● Automated CI/CD
● Dependency analysis, regression control
● Cloud computing - docker, VMs, standard dev environments



Where would we like to get to?
Talisman company wants

● Supportable
● Doesn’t break existing production quality service
● Modern architecture: 

ReactJS front end and microservice API backend
● Unit tests, quality tools
● Documentation
● Automated CI/CD
● Dependency analysis, regression control
● Cloud computing - docker, VMs, standard dev environments



First steps - inventory and standardise

Made an inventory and archive of all software and product assets.

Standardised on RHEL 7.3, MySQL 5.x, perl 5.16.3.

Wrote ansible scripts to automate deployment of standard server.

Used these to create AWS Virtual Machine servers
and a standard virtualbox local development VMs under vagrant.
Dev replicates what is on production.

Introduce Jira ticketing, Slack communication, github.com for code workflow, 
and Agile processes.

https://www.ansible.com/
https://aws.amazon.com/console/
https://www.atlassian.com/software/jira
https://slack.com/
https://github.com/


We got there



How did we get there?

Question: How do I eat an elephant?

Answer: one bite at a time.

But

Squeak! Source: https://www.ihavetoomuchstuff.com/
blog/secret-decluttering-home/

https://www.ihavetoomuchstuff.com/blog/secret-decluttering-home/
https://www.ihavetoomuchstuff.com/blog/secret-decluttering-home/


Naive approach

Do It All In One Go. It’ll be easy.
The code will be clean. It will be perfect.

We will have fun. We’ll write lots of code!





What happens

Do It All In One Go.
Takes a large team 3 years to do it all and get it properly stable. Costs a lot.

1. “Rewrite it all in Python. It’ll be easy.” 
And now two tech stacks to support because of existing customers.

2. Rewrite it all in latest framework because it’s great 
[Catalyst, Mojolicious, Dancer, Dancer2, Raisin…]
You will note from this list that the latest framework will have changed by the 
time you finally get there… and it still takes a long time for it to be stable.

I have seen multiple projects fail with this approach. “Big Bang” project often == Big Bang



What happens

Do It All In One Go.
Takes a large team 3 years to do it all and get it properly stable. Costs a lot.

1. “Rewrite it all in Python. It’ll be easy.” 
And now two tech stacks to support because of existing customers.

2. Rewrite it all in latest framework because it’s great 
[Catalyst, Mojolicious, Dancer, Dancer2, Raisin…]
You will note from this list that the latest framework will have changed by the 
time you finally get there… and it still takes a long time for it to be stable.

I have seen multiple projects fail with this approach. “Big Bang” project often == Big Bang



Gradual approach - expert led

Get an expert in - a few examples, plenty of others! Ask around
Gabor Szabo https://perlmaven.com/ Dave Cross https://davorg.dev/ Andrei 
Shitov https://andrewshitov.com/ Curtis “Ovid” Poe https://ovid.github.io/ John 
Napiorkorwski https://www.linkedin.com/in/jnapiorkowski/

Ask them to

● Itemise and assess what you have
● Advise on best new tech to use
● Figure out how to leverage your existing production quality code

https://perlmaven.com/
https://davorg.dev/
https://andrewshitov.com/
https://ovid.github.io/
https://www.linkedin.com/in/jnapiorkowski/


What we did

I went via Matt Geppert https://www.linkedin.com/in/mattgeppert/ a UK 
recruiter I’ve used often, who runs Open Select Recruitment 
https://www.osrecruit.com/

And hired Dave Lambley https://www.linkedin.com/in/dave-lambley-992a263/ 
Dave helped us sort it all out. 
Here’s one of his talks. Don’t know who he’s mentioning.
https://archive.fosdem.org/2018/schedule/event/software_necromancy/

https://www.linkedin.com/in/mattgeppert/
https://www.osrecruit.com/
https://www.linkedin.com/in/dave-lambley-992a263/
https://archive.fosdem.org/2018/schedule/event/software_necromancy/


If you find yourself in a hole, stop digging

New tech stack:

● Microservice API backends using Dancer2 
https://metacpan.org/pod/dancer2 or Raisin 
https://metacpan.org/pod/Raisin

● New UI using ReactJS and node.js

All major future new development uses new stack.
Only maintenance and small changes with old 
stack.

https://en.wikipedia.org/wiki/Law_of_holes

https://metacpan.org/pod/dancer2
https://metacpan.org/pod/Raisin
https://en.wikipedia.org/wiki/Law_of_holes


Using Modern Perl - some resources

● The Modern Perl book by Chromatic: 
http://www.modernperlbooks.com/books/modern_perl_2016/index.html
https://github.com/chromatic/modern_perl_book/

● Perl Maven https://perlmaven.com/ by Gabor Szabo
● Resources at https://learn.perl.org/
● Perl Best Practices as reflected in perlcritic 

https://metacpan.org/pod/perlcritic
● Recommended modules for Enlightened Perl 

https://metacpan.org/pod/Task::Kensho

http://www.modernperlbooks.com/books/modern_perl_2016/index.html
https://github.com/chromatic/modern_perl_book/
https://perlmaven.com/
https://learn.perl.org/
https://metacpan.org/pod/perlcritic
https://metacpan.org/pod/Task::Kensho


But what about the 
deprecated old 
stack?

A system architecture 
diagram I created to help 
visualise the “to be” state.

The red circled part is what 
we’ll look at today:
Modernising the legacy CGI to run on 
Plack and remove apache 1 + 
mod_perl 1



What do we mean by old perl?

Versions shipped by Red Hat: we used RH 7, 9 then, later RHEL 2, 3, 5, 7, Rocky 
Linux 8

1999 perl 5.005, legacy C-ISAM database
2002 perl 5.8.0 was problematic with utf-8
2003 perl 5.8.1 this is where a lot of our code got “parked”, legacy + MySQL 3.x
2008 perl 5.8.8
2014 perl 5.16.3 ships with RHEL7, legacy + MySQL 5.x

2003, rewrote much early code to run under mod_perl1 with Apache::PerlRun



Mod_perl1 porting guidelines for CGI code
https://perl.apache.org/docs/1.0/guide/

● use strict; use warnings; # mea culpa, mea maxima culpa
    update the header

● Local variables my $x -> our $x
● Use braces to create scope to remove code from scope after execution

{
    … old code goes here, will now get run on next invocation
}

● Replace globals and procedural code with objects
- but it may be impractical if there is too much

● Garbage collection, mod_perl 1: end of execution hook: release locks and other resources

https://perl.apache.org/docs/1.0/guide/


Mod_perl1 porting guidelines for CGI code
https://perl.apache.org/docs/1.0/guide/

● use strict; use warnings; # mea culpa, mea maxima culpa
    update the header

● Local variables my $x -> our $x
● Use braces to create scope to remove code from scope after execution

{
    … old code goes here, will now get run on next invocation
}

● Replace globals and procedural code with objects
- but it may be impractical if there is too much

● Garbage collection, mod_perl 1: end of execution hook: release locks and other resources

https://perl.apache.org/docs/1.0/guide/


How did apache 1 work?

/etc/httpd/conf/httpd.conf
    ScriptAlias /cgi-bin/ "/var/www/cgi-bin/"

apache sees a file with .cgi extension and executes it
this means many entry points

/var/www/cgi-bin/tal_dev4/cgi/
   bookings/list.cgi, bookings/view.cgi, bookings/amend.cgi, …
   candidate/list.cgi, candidate/view.cgi, …

600 scripts later



mod_perl1

This was the perl interpreter compiled with the apache1 C code into a single 
binary to execute scripts without the perl binary load time overhead.

We already had a lot of CGI scripts and not enough time to rewrite to use 
Apache::Registry. We used Apache::PerlRun to read the scripts into memory 
and fake a CGI environment for them to run in.
We put a system apache 2 as front end proxy in front.

It ran a lot faster and was solid for the past 20 years. We couldn’t justify the 
cost of rewriting it to mod_perl2 in 2005… another compromise.



mod_perl1

This was the perl interpreter compiled with the apache1 C code into a single 
binary to execute scripts without the perl binary load time overhead.

We already had a lot of CGI scripts and not enough time to rewrite to use 
Apache::Registry. We used Apache::PerlRun to read the scripts into memory 
and fake a CGI environment for them to run in.
We put a system apache 2 as front end proxy in front.

It ran a lot faster and was solid for the past 20 years. We couldn’t justify the 
cost of rewriting it to mod_perl2 in 2005… another compromise.



Obsolescence
(Not old programmers :-)

CGI.pm is discouraged from use

and getting apache1 + mod_perl1 to compile on Red Hat Enterprise Linux 7 

I had to modify the apache1 C code. Getting it to compile and run without 
segmentation violations was “quite tricky”.

We decided it had to go and be replaced with Plack, before we moved to Rocky 
Linux 8, in case Bad Things Happened.



Moving CGI to Plack

With a modern framework, you have a single persistent entry point on a master 
server that routes web requests and calls the correct class and method to 
process it.

We can fake that, without rewriting all those old scripts, by using 
Plack::App::CGIBin to map the web request URL path to script files.
This reads them into memory and then eval()s on each web request.

https://metacpan.org/pod/Plack::App::CGIBin


Using SSO and SSO proxy instead of apache 2 
front end proxy

We added on the front end Gluu https://gluu.org/single-sign-on/ SSO for people 
to login (replacing the old perl login web form, though that remained as an 
option for when directly logging in to the server not via SSO).

We front it with nginx as a master router.
Gluu SSO proxy replaces old apache 2 front end to route authorised requests.
Gluu uses apache 2 as its proxy server inside a docker container.

In the old world we used cookies for user and session for authentication.
In the new world, it is different..

https://gluu.org/single-sign-on/


SSO proxy configuration - authentication header

We pass web headers OIDC-CLAIM-EMAIL and OIDC-CLAIM-SUB to the backend as auth.
Changed the framework to allow auto-login for matching user if IP origin was SSO proxy.

/opt/iam/psgis/apache-docker-tal-qa-psgi/httpd/conf/extra/httpd-ssl.conf

<VirtualHost _default_:443>

...

  ReWriteEngine On
  RequestHeader set OIDC-CLAIM-EMAIL "expr=%{ENV:OIDC_CLAIM_email}"
  RequestHeader set OIDC-CLAIM-SUB "expr=%{ENV:OIDC_CLAIM_sub}"



SSO proxy configuration - routing

We route /cgi-{bin,perl}/ requests to the Plack backend legacy CGI service, here port 24001

/opt/iam/psgis/apache-docker-tal-qa-psgi/httpd/conf/extra/httpd-ssl.conf

  # redirect / to default cgi/home.cgi
  ReWriteRule ^/$ http://52.56.93.98:24001/cgi-bin/tal_qa/cgi/home.cgi [P]

  # proxy /cgi-bin/ and /cgi-perl/ requests to Plack backend service on qa server
  # to run older code
  ReWriteRule ^/cgi-bin/(.*$) http://52.56.93.98:24001/cgi-bin/$1 [P]
  ReWriteRule ^/cgi-perl/(.*$) http://52.56.93.98:24001/cgi-bin/$1 [P]



SSO proxy configuration - routing 2

Static assets remain served by apache2 port 80 on same server as backend
/opt/iam/psgis/apache-docker-tal-qa-psgi/httpd/conf/extra/httpd-ssl.conf
  # static assets served by apache 2 on qa server
  ReWriteRule ^/tal/(.*$) http://52.56.93.98/tal/$1 [P]
  ReWriteRule ^/icons/(.*$) http://52.56.93.98/icons/$1 [P]



SSO proxy configuration - routing 3

New backend API is routed to TWAPI service, here port 17339
/opt/iam/psgis/apache-docker-tal-qa-psgi/httpd/conf/extra/httpd-ssl.conf
  # TWAPI - Raisin API service to run newer code, also under Plack
  <Location /apiclient/twapi/tal-qa/>
    AuthType auth-openid
    OIDCUnAuthAction 401
    ProxyPass http://52.56.93.98:17339/
    ProxyPassReverse http://52.56.93.98:17339/
  </Location>

  ProxyPassReverse / http://52.56.93.98/

http://52.56.93.98:17339/
http://52.56.93.98:17339/


Plack psgi loader

This provides the service point referenced above

http://52.56.93.98:24001/cgi-bin/$1

We have a main entry point

{Application root}/cgi/plack_loader.psgi



How we run it - manually

We can run it as a development standalone server
$ cd /var/www/cgi-bin/tal_qa/cgi
$ plackup plack_loader.psgi
(defaults to listening at localhost port 5000)

to run with the perl debugger you need invoke plackup, not the .psgi
$ perl -d /usr/local/bin/plackup plack_loader.psgi
You can also start the debugger from VSCode by passing psgi filename arg 
https://marketplace.visualstudio.com/items?itemName=richterger.perl

https://marketplace.visualstudio.com/items?itemName=richterger.perl


How we run it - from systemd

Normally we start it as a service using a systemd unit to run under Starman 
PSGI web server
$ systemctl status tal-psgi@tal_qa.service
● tal-psgi@tal_qa.service - Start Talisman PSGI service for tal_qa
   Loaded: loaded (/usr/lib/systemd/system/tal-psgi@.service; disabled; vendor preset: disabled)
   Active: active (running) since Mon 2023-08-14 02:03:03 BST; 10h ago
  Process: 22044 ExecStart=/usr/local/bin/plackup --port $PORT --workers $WORKERS --daemonize 
--access-log=${LOGPREFIX}_access.log --error-log=${LOGPREFIX}_error.log
--pid=${LOGPREFIX}_server.pid -a ${BASEDIR}/%i/cgi/plack_loader.psgi (code=exited, status=0/SUCCESS)
 Main PID: 22045 (starman master )
   CGroup: /system.slice/system-tal\x2dpsgi.slice/tal-psgi@tal_qa.service
           ├─22045 starman master
           ├─22046 starman worker
           ├─22047 starman worker …



Systemd environment file

$ cat /etc/sysconfig/tal-psgi/tal_qa
BASEDIR=/var/www/cgi-bin
PORT=24001
WORKERS=5
PLACK_SERVER=Starman
PLACK_ENV=production
AREA=tal_qa
LOGPREFIX=/beacon/logs/tal-psgi/tal_qa



Systemd unit

$ cat /usr/lib/systemd/system/tal-psgi@.service
[Unit]
Description=Start Talisman PSGI service for %i
After=syslog.target network-online.target
Wants=network-online.target

[Service]
Type=forking
Restart=on-failure
RestartSec=5
EnvironmentFile=/etc/sysconfig/tal-psgi/%i
ExecStart=/usr/local/bin/plackup --port $PORT --workers $WORKERS --daemonize 
--access-log=${LOGPREFIX}_access.log --error-log=${LOGPREFIX}_error.log --pid=${LOGPREFIX}_server.pid -a 
${BASEDIR}/%i/cgi/plack_loader.psgi

[Install]
WantedBy=multi-user.target



In the plack_loader.psgi script

We use these to provide the legacy CGI web service:
- Plack PSGI toolkit
- Plack::App::CGIBin as a cgi-bin replacement
uses CGI::Compile to read and cache perl scripts into subs (like ModPerl::Registry)
and then run it as a persistent application using CGI::Emulate::PSGI
- Plack::App::MCCS to serve static assets
- Plack::Builder
Inside a builder block we map an apache ExecCGI /cgi-bin/AREA path to 
Plack::App::CGIBin for later execution.

https://metacpan.org/pod/Plack
https://metacpan.org/pod/Plack::App::CGIBin
https://metacpan.org/pod/CGI::Compile
https://metacpan.org/dist/mod_perl/view/docs/api/ModPerl/Registry.pod
https://metacpan.org/pod/CGI::Emulate::PSGI
https://metacpan.org/pod/Plack::App::MCCS
https://metacpan.org/pod/Plack::Builder


plack_loader.psgi

use strict;
use warnings;
use Beacon::TalPath qw/TalPath/;
use Plack;
use CGI::Compile;
use Plack::Builder;
use Plack::App::MCCS;
use Plack::App::CGIBin;
use File::Basename qw();



plack_loader.psgi - handle non-safe scripts

sub should_run_with_child_exec_perl {
   my $file = shift // '';
   $ENV{SCRIPT_FILENAME} = $file; # so Talsettings::calc_appfile_path() can find cgi 
root directory
   my $scriptdir = File::Basename::dirname($file);
   chdir($scriptdir) || die "cannot change to CGI script directory $scriptdir: $!";
   ... returns boolean whether we need to fork a new perl child each time
}

Legacy framework expects apache environment variable

We will see how this works later



plack_loader.psgi - if you need an init hook

# EXAMPLE OF an init hook before Talisman code
# {
#  my $orig = *CGI::initialize_globals{CODE};
#  no warnings 'redefine';
#  *CGI::initialize_globals = sub {
#     print STDERR "CGI::initialize_globals()\n";
#     <<do something here>>
#     &$orig;
#  };
# }



plack_loader.psgi - end hook for cleanup

# CGI::Compile does not have a register_cleanup hook like mod_perl1
# so wrap its serve_path method to call Talisman cleanup if it exists
{
   my $orig = *Plack::App::CGIBin::serve_path{CODE};
   no warnings 'redefine';
   *Plack::App::CGIBin::serve_path = sub {
      my @results = &$orig(@_);
      Tal::Common::sm_End() if defined &Tal::Common::sm_End; # Talisman cleanup
      return @results; # HTTP response header, content
   };
};



Plack_loader.psgi - app root and area name

my $rootdir = TalPath(); # e.g. /var/www/cgi-bin/tal_pe
my $area = $ENV{PLACK_TAL_AREA} # if set in systemd environment file use that
        || pop [split '/', $rootdir] # otherwise work out area name from rootdir e.g. tal_pe
        || die 'cannot locate area from rootdir '.$rootdir;
print STDERR "plack_loader.psgi running under rootdir [$rootdir] area [$area]\n";



Plack_loader.psgi - build the mount points

builder {
   # enable 'Plack::Middleware::MCCS', path => qr{/^icons/}, root => 
'/usr/share/httpd/icons/'; # alternative
   mount '/icons' => Plack::App::MCCS->new( # /usr/share/httpd/icons/apache_pb.gif
      root => '/usr/share/httpd/icons',
      defaults => { etag => 0, cache_control => ['no-cache'], compress => 0 },
   )->to_app;
…



Plack_loader.psgi - build the mount points

   # automatically load, compile and run perl scripts
   # e.g. http://localhost:5000/cgi-bin/tal_dev4/cgi/candidate/view.cgi/10234
   #      -> execute code in /var/www/cgi-bin/tal_dev4/cgi/candidate/view.cgi
   mount "/cgi-bin/$area/cgi" => builder {
      Plack::App::CGIBin->new(    
         root => "/var/www/cgi-bin/$area/cgi",    
         exec_cb => \&should_run_with_child_exec_perl,
      )->to_app;
   };
…



Plack_loader.psgi - build the mount points

   # how to mount a URL for a single perl script
   #mount '/cgi-bin/tal_dev4/cgi/advance/list.cgi' => Plack::App::WrapCGI->new(script => 
"advance/list.cgi")->to_app; 
   # PATH_INFO '/tal_dev4/cgi/advance/list.cgi
   # REQUEST_URI /cgi-bin/tal_dev4/cgi/advance/list.cgi'
…



Plack_loader.psgi - end

   # default static serve everything else below root /
   mount '/' => Plack::App::MCCS->new(
      root => '/var/www/html',
      defaults => { etag => 0, cache_control => ['no-cache'], compress => 0 },
   )->to_app;
   # how to proxy static file serving to a shared central server
   #mount '/', Plack::App::Proxy->new(remote => 'http://localhost/')->to_app,
   #mount '/icons', Plack::App::Proxy->new(remote => 'http://localhost/icons')->to_app,
};

Normally apache2 does this in production, 
via nginx and SSO proxy. 
This will work for local dev.



Old headers in CGI scripts from perl 5.005

#!/usr/bin/perl -w
# bookingpay/amend.cgi
# %I% %D%
use strict;
$^W = 1;
package main;
use lib ( "..", "../pmtal", "../pmsys", $ENV{PERLMOD_TAL}||"/usr/local/perlmod/tal", 
$ENV{PERLMOD_SYS}||"/usr/local/perlmod/sys" );
use vars qw($VERSION); $VERSION = do { my @r = (q$Revision: %I% $ =~ /\d+/g); sprintf 
"%d."."%02d" x $#r, (@r?@r:0) }; # must be all one line, for MakeMaker

We're not going to rewrite 600 working scripts. Fix their headers instead.

Antique SCCS field replaced when checking file out - delete!

becomes   use ‘warnings’;   in perl 5.008

obsolete

fix

#!/usr/bin/env perl
#vim:ts=3:shiftwidth=3:expandtab

some legacy system modules expect to be in global namespace - keep



After

#!/usr/bin/env perl
# vim:ts=3:shiftwidth=3:expandtab
use strict;
use warnings;
package main; # some legacy system modules expect to be in global namespace
use Beacon::TalPath; # not FindBin::Real as it gets confused by Plack and CGI::Compile wrapper
use lib "$Beacon::TalPath::Bin/cgi"; # needed for Plack and VSCode perl debugger as it runs from 
a different directory
use TalSyntax; # set strictures, turn on features, add lib paths, use standard Talisman modules

We're not going to rewrite 600 working scripts. Fix their headers instead.



Common include header

This is something I wished I'd known about earlier, before editing 600+ .cgi 
scripts.

John Napiorkowski 
https://dev.to/jjn1056/using-modern-perl-features-in-your-projects-4e7m

"I create a '::Syntax' module in the root of my project namespace and use that to 
setup all the features I want."

https://dev.to/jjn1056/using-modern-perl-features-in-your-projects-4e7m


TalSyntax.pm - set perl library paths

package TalSyntax;
use strict;
use warnings;
use Import::Into;    # works from perl 5.006
use Module::Runtime; # works from perl 5.006

# FindBin gets confused by Plack and CGI::Compile wrapper so use Beacon::TalPath
use Beacon::TalPath; # needed to work across Plack + CGI::Compile, mod_perl, CGI, interactive
use lib "$Beacon::TalPath::Bin/cgi";
use lib "$Beacon::TalPath::Bin/cgi/pmtal";
use lib "$Beacon::TalPath::Bin/cgi/pmsys";
use lib "$Beacon::TalPath::Bin/cgi/am";
use lib "$Beacon::TalPath::Bin/cgi/document/Module";



TalSyntax.pm - turn on features

# standard use declarations to apply in header of all modules
sub importables {
  my ($class) = @_;
  return (
    # Features/pragmas
    'utf8',
    'strict',
    'warnings',
    ['feature', ':5.16'], # see https://perldoc.perl.org/feature, turns on the following features
      # bareword_filehandles current_sub evalbytes
      # fc indirect multidimensional say state
      # switch unicode_eval unicode_strings
    #['feature', 'say'], # if you want a specific feature
    #['experimental', 'signatures', 'postderef'], # needs perl 5.20.0 and later, our base standard was 5.16.3



TalSyntax.pm - use application modules

    # Modules. These were imported previously in a worse way by pmtal/Tal.pm into the 'main' namespace
    'Tal::GlobalVars',
    'Talsettings',
    'Tal',
    'Tal::Common',
    'Tal::Browser',
    'Tal::Date',
    'Tal::Display',
    'Tal::SQL',
    'Tal::Script',
    'Tal::Security',
    'Tal::User',
    'Tal::Utility',
  );
}



TalSyntax.pm - hook to do the import

sub import {
  my ($class, @args) = @_;
  my $caller = caller;
  foreach my $import_proto($class->importables) {
    my ($module, @args) = (ref($import_proto)||'') eq 'ARRAY' ?
      @$import_proto : ($import_proto, ());
    Module::Runtime::use_module($module)
      ->import::into($caller, @args)
  }
}



Badly behaved scripts need exec perl 
(fork and run a new perl each time to run those)

Some ancient code and frameworks are not cost-effective to fix as the products 
may be legacy and will go away in a few years.  
Previously handled with apache2 proxy rules:

   <IfModule mod_rewrite.c>
   <VirtualHost *:80>
      Include /etc/httpd/conf.d/proxy_rules.inc
      ...
   # run tal_dev4 accounts framework under apache2 cgi-bin exec perl
   RewriteRule       ^/cgi-perl/tal_dev4/cgi/accounts/(.*$) 
http://localhost:80/cgi-bin/tal_dev4/cgi/accounts/$1 [L,P]
   RewriteRule       ^/cgi-perl/tal_dev4/cgi/customer/(.*$) 
http://localhost:80/cgi-bin/tal_dev4/cgi/customer/$1 [L,P]



Badly behaved scripts need exec perl 
(fork and run a new perl each time to run those)

# in plack_loader.psgi
   Plack::App::CGIBin->new(     
      root => "/var/www/cgi-bin/$area/cgi",
      exec_cb => \&should_run_with_child_exec_perl,
   )->to_app;

sub should_run_with_child_exec_perl {
   my $file = shift // '';
   ...

Now handled by Plack in Plack::App::CGIBin exec_cb hook, that we saw earlier



Badly behaved scripts need exec perl 
(fork and run a new perl each time to run those)

  # unsafe programs need child exec perl
   if ( $file =~ m{
      (
         cgi/accounts/
      |  cgi/customer/
      ...
      )
      }x )
   {
      $should_exec = 1;
   }
   # for other .pl and .cgi files, run persistently in this perl via a CGI wrapper 
   elsif ( $file =~m/(.cgi|.pl)$/ )
   {
      $should_exec = 0;
   }...



Finding application root

I mentioned we wrote a module Beacon::TalPath to work out application root.

You have a few options:

1. systemd environment to set PERL5LIB or application root directory APPDIR. 
Equivalent of apache config: PerlSetEnv MYLIB /srv/http/site/apps/thisone/lib

2. Relative to main app file: use File::Basename; use lib dirname( __FILE__ );
3. For our legacy framework, it expects $ENV{SCRIPT_FILENAME} so we set that in 

plack_loader.psgi based off exec_cb callback (which is passed file path)
4. For CGI or mod_perl1 with Apache::PerlRun - FindBin::Real::Bin() - breaks under 

Plack and CGI::Compile as $0 is not what FindBin::Real expects



Other changes needed for CGI::Compile

Remove unneeded globals

Remember you have to reset them every run. They will persist the previous run's 
value leading to unpredictable failures if you are not careful. Why risk it?

my $booking_no;

sub run {
  $booking_no ||= CGI->new->multi_param(‘booking_no’); # oops, got last run value



Other changes needed for CGI::Compile

Replace 'my' lexicals with 'our' package globals.
https://metacpan.org/pod/CGI::Compile
“If your CGI script has a subroutine that references the lexical scope variable 
outside the subroutine, you'll see warnings such as:
Variable "$q" is not available at …
Variable "$counter" will not stay shared at …
This is due to the way this module compiles the whole script into a big sub. To 
solve this, you have to update your code to pass around the lexical variables, or 
replace my with our. See also 
http://perl.apache.org/docs/1.0/guide/porting.html#The_First_Mystery for 
more details.”

https://metacpan.org/pod/CGI::Compile
http://perl.apache.org/docs/1.0/guide/porting.html#The_First_Mystery


Example of tidying up an old script
that is too much effort/risky to fully rewrite

#!/usr/bin/perl -w
# timesheets/attach.cgi
# %I% %D%
use strict;
$^W = 1;
package main;
use lib ( "..", "../pmtal", "../pmsys", $ENV{PERLMOD_TAL}||"/usr/local/perlmod/tal", 
$ENV{PERLMOD_SYS}||"/usr/local/perlmod/sys" );
use vars qw($VERSION); $VERSION = do { my @r = (q$Revision: %I% $ =~ /\d+/g); sprintf "%d."."%02d" x 
$#r, (@r?@r:0) }; # must be all one line, for MakeMaker
use Tal;
use Tal::List;
use timesheets::sm_timesheets;
use tsimage::ListTSImage;

The usual cruft



Example of tidying up an old script
that is too much effort/risky to fully rewrite

use Document;
use View::Slcust;
require '../timesheets/display_common.pl';
require '../timesheets/display_timesheet.pl';
require '../timesheets/read_timesheet.pl';
sm_Common    ();
sm_PrintHead ("Attach Image To Timesheet");
sm_PrintBody ();
…

Written by a C programmer like
#include “display_common.c”

Code in top scope only runs 
on initial parse, not on 
subsequent runs



After

#!/usr/bin/perl -w
# timesheets/attach.cgi
package main;
use Beacon::TalPath; # not FindBin as it gets confused by Plack and CGI::Compile 
wrapper
use lib "$Beacon::TalPath::Bin/cgi"; # needed for Plack and VSCode perl debugger as it 
runs from a different directory
use TalSyntax; # set strictures, turn on features and use standard Talisman modules



After

use Tal::List;
use timesheets::sm_timesheets;
use Document;
use View::Slcust;
# code moved into timesheets::Common
#require '../timesheets/display_common.pl';
#require '../timesheets/display_timesheet.pl';
#require '../timesheets/read_timesheet.pl';
use vars qw(%tc);
use timesheets::Common;



After

# globals the .pl files previously created, now declared as package globals
our ($timesheet_no, $surname, $serial_code, $serial_multi, $doctype, $button, 
$multi_image,
    $image_cur_image, $lookfor, $timesheet_no_key, $timesheet_keys);

# code moved inside block to ensure it is run when CGI::Compile re-runs it
{
   sm_Common    ();
   sm_PrintHead ("Attach Image To Timesheet");
   sm_PrintBody ();

Must be in block or it won’t run again next time



That’s it! Any questions?

Thanks.

https://www.talisman.tech/
https://linkedin.com/in/peteredwards/
http://dragonstaff.co.uk/perl/ - link to slides is here

PerlKohaCon, Helsinki Aug 15th 2023

https://www.talisman.tech/
https://linkedin.com/in/peteredwards/
http://dragonstaff.co.uk/perl/

