hhhhhhhhhhhhhhhhh

Modernising
Legacy Perl

Peter Edwards, Talisman Technology

https://www.talisman.tech/
https://linkedin.com/in/peteredwards/
http://dragonstaff.co.uk/perl/

Peter - Introduction

Been using perl since it was first released, and using
Unix since 1984. Worked in Commercial, Education,

Media, International Public Relations:

Open University, BBC Future Media and World Service, British Council.
Procured Koha LMS for British Council library, Lahore, Pakistan, 2016.

Speaking at first Kiev Perl Mova
Conference in 2008

Spent a lot of time at Talisman Tech writing
perl CGl web programs in early 2000s.
Rejoined in 2017 as CTO to modernise the
company, codebase and products.

https://www.britishcouncil.org/contact/press/new-libraries-enhance-uk-pakistan-relationship
https://www.britishcouncil.pk/library/about/lahore

Talk - What we'll cover

We'll look at crufty* old perl, and see how it can be modernised
in a real world case.

How can | go from apache 1/mod_perl 1 web server with CGIl and perl 5.10.1
to Plack with PSGI and perl 5.36 and a modern Web site service environment?

It can be done!

* Cruft is a jargon word for anything that is left over, redundant and getting in the way. It is used particularly for defective, superseded,
useless, superfluous, or dysfunctional elements in computer software. https://en.wikipedia.org/wiki/Cruft

https://en.wikipedia.org/wiki/Cruft
https://en.wikipedia.org/wiki/Cruft

What have we got in 20797

‘A.\ .-

ITS2019 % ./

o nl\mm mm

' h‘\aiah'mm

il R L

' \ mu AL

mmm
HHI‘H

|

RS-232 plug box for wiring VDU green screen
terminals to Unix servers. Finally removed from
our machine room last week (2023-08-06)

Talisman Web

Recruitment CRM/Pay and Bill/Accounts

‘ Selections: Show: List Candidates)
Sandihe S -] Availabilty (]| ~ Clear Selections)
tal.sman Telephone Location/Postcode/ZIP| Address [] Add Candidate]
Consultant v IRadius (miles) 3 | Profile (J| > Power Search)
Branch Milton Keynes % v Division ~llcvMateh ()
. Re d H at E n t e r p ri S e L i n u X 7 Talisman Administrator Available From I:‘D Available To |:|I:I pob History (]
. © Talisman Availability | + | Spoken On From |
. RO u n d t rl p H T M L 4 PO St a > Cons. Overview Wob Group Level v Job Group Discipline .
© > Recent Records Gender v Avail/Possible Available
© Candidates GDPRStatus |] External ID
form, whole page of HTML e v =
> Saved Searches
C O m e S b a C k > Favourites Profile Search p 1 ’?[Location
‘ : ::1"3‘” . Text Search | || Name v|
ompanies
o CGI prOtOCO| from apaChe > CV Queue CANDIDATE LIST
2 _GDPR Audit Log ngd Initials Forename Surname Postcode Telephone Mobile Ccv Spoken On Reg]i)satnt':tion S(i:?uds C
We b S e rve r g g:::;its (J] 500005 50000 Whale CB202LL +4 02/05/2012 14/04/2020 *DEL* Talismar
© Job (] j 36534 DT David testcode SE25 6XL Live Talismar]
. F ra m eS et a n d fra m eS (I) g Booking (Temp) (] | 36532RS Runish Shaw E65PJ ' 16/01/2023 Live Talismar
. Placement (Perm) |) ;| 365311D Linett Disiva LO1VE Live Talismar
© Advanced) .
e Apache 2 system perl 5.16 sl Bl Pending Tlama
. © Special Options O ﬂ 36529 MH Mark Hazel PN7 2RD Pending Talismar]
© Pay and Bill O j 36528 MH Mark Haze PN72RD Pending Talismar|
[Ap a C h e 1 m O d_p e rI 5 . 1 O . 1 © Accounts () i|36527ML Marcus Luis ~ LO1VE Pending Talismar]
g :::::inistration () i| 36526 AA Alex alan LO1VE Pending Talismar]
> Change Password O j 36525 AA Alex alee LO1VE Pending Talismar]

> User Configuration
> Log off
> >> Beacon Intranet

Records 1 - 10 Shown of 368 Matching the Search

@)EGIEI@EIEGY0D (12) (13) (14) (15) (18) (17) (18) (19) (29)
(Next) Entries per page [10 |

2019

e Proxy via Apache 2 front to Apache 1 mod_perl backend perl 5.10.1

e Written with perl 5.005 then perl 5.008, and MySQL 3 database.

e Mixture of legacy perl, some okay with ‘use warnings’, some written like C,
or BASIC and not. Some “green screen” 4GL code and C-ISAM database.

e A decent business database object layer. We can build on that.

e Some badly behaved scripts have to run in perl exec CGlI mode so Perl exit()
does the garbage collection :-(Runs from Apache 2

e Majority of code runs under mod_perl1 compiled with apache1 web server.

e On-premise servers

2019

e Proxy via Apache 2 front to Apache 1 mod_perl backend perl 5.10.1

e Written with perl 5.005 then perl 5.008, and MySQL 3 database.

e Mixture of legacy perl, some okay with ‘use warnings’, some written like C,
or BASIC and not. Some “green screen” 4GL code and C-ISAM database.

e A decent business database object layer. We can build on that.

e Some badly behaved scripts have to run in perl exec CGl mode so Perl exit()
does the garbage collection :-(Runs from Apache 2

e Majority of code runs under mod_perl1 compiled with apache1 web server.

e On-premise servers

Where would we like to get to?

Customer wants

Modern design and UX: ReactJS

Get rid of the old green screen 4GL programs

Scalable service

Mixture of on-premise and cloud computing options with
integrations to third parties

Database replication and at rest encryption

Single Sign On

Where would we like to get to?

Talisman company wants

e Supportable

Doesn't break existing production quality service

Modern architecture:

ReactJS front end and microservice API backend

Unit tests, quality tools

Documentation

Automated CI/CD

Dependency analysis, regression control

Cloud computing - docker, VMs, standard dev environments

Where would we like to get to?

Talisman company wants

e Supportable

Doesn't break existing production quality service

Modern architecture:

ReactJS front end and microservice API backend

Unit tests, quality tools

Documentation

Automated CI/CD

Dependency analysis, regression control

Cloud computing - docker, VMs, standard dev environments

First steps - inventory and standardise

Made an inventory and archive of all software and product assets.
Standardised on RHEL 7.3, MySQL 5.x, perl 5.16.3.

Wrote ansible scripts to automate deployment of standard server.

Used these to create AWS Virtual Machine servers
and a standard virtualbox local development VMs under vagrant.
Dev replicates what is on production.

Introduce Jira ticketing, Slack communication, github.com for code workflow,
and Agile processes.

https://www.ansible.com/
https://aws.amazon.com/console/
https://www.atlassian.com/software/jira
https://slack.com/
https://github.com/

calisman.

Hi Administrator!

Welcome to your WPB Demonstration Talisman Tile Homepage Learning & Suppor

CRM / Record Setup Dashman Timeline Wink Wink
.. .
calisman.
C O i
s ons. Overview 4
=— Menu o 5. & .U
3 — . . o . . L] S
= Summary X Reminders & Jobs ® starts Bookings Interviews 2 Placements & Email :' e
@ Cons. Overview i
Consultant ~ Administrator v Branch v
2 Portal Funding Back Office
o) List Jobs
Status v Type v m Reg Date From m Reg Date To Profile .
(%) Start Date From (%) Start Date To Rates (@ X Clear Selections
Diary .
il
Profile Search Type to find profile codes ’ Power Search
Full text search on fields v 5‘
105 matches sk Job Pay and Bill Compliance
B Job List Page1of11 > Entries per page 10 v
Job Job Title Type Salary From Salary To Contact Cont Name Client Name No of Vacancies No of Bookings Status Date Consulta
Lift Mr Lewis Frimley o
157 Supervisor Contract 30000.00 35000.00 FRIMAAO1 Hamilton ERIMAA Health 1 1 Open 29/06/2023 Administ
153 NurSe Contract ABCPAAOY WKV aBcPAA ABCPLC 3 Open 17/05/2023 Administ
Maths Chanie Ravenscroft i
151 Tiitir Contract RAVEAAO1 Ravenscroft RAVEAA Family 1 Open 15/05/2023 Administ
150 SPiderman conyqcy FRIMAAQOT Mrlewis — gppyan Frimley g 2 Open 10/05/2023 Administ
—= assistant ————=— Hamilton === Health P T

147 BarStaff Contract ABCPAAOT Nicky ABCPAA ABC PLC Open 17/03/2023 Administ

I How to Eat an Elephant?

How did we get there?

Question: How do | eat an elephant?

Answer: one bite at a time.

But

| One bite at a time. I

Source: https://www.ihavetoomuchstuff.com/
blog/secret-decluttering-home/

Squeak!

https://www.ihavetoomuchstuff.com/blog/secret-decluttering-home/
https://www.ihavetoomuchstuff.com/blog/secret-decluttering-home/

Naive approach

Do It All In One Go. It'll be easy.
The code will be clean. It will be perfect.

We will have fun. We'll write lots of code!

Definition of 'counsel of perfection'

counsel of perfection

in British English

excellent but{unrealizable)advice

See full dictionary enteyfor counsel

Collins English Dictionary. Copyright © HarperCollins Publishers

What happens

Do It All In One Go.
Takes a large team 3 years to do it all and get it properly stable. Costs a lot.

1. “Rewrite it all in Python. It'll be easy.”
And now two tech stacks to support because of existing customers.

2. Rewrite it all in latest framework because it's great
[Catalyst, Mojolicious, Dancer, Dancer?2, Raisin...]
You will note from this list that the latest framework will have changed by the
time you finally get there... and it still takes a long time for it to be stable.

| have seen multiple projects fail with this approach. “Big Bang"” project often == Big Bang

What happens

Do It All In One Go.
Takes a large team 3 years to do it all and get it properly stable. Costs a lot.

1. “Rewrite it all in Python. It'll be easy.”
And now two tech stacks to support because of existing customers.

2. Rewrite it all in latest framework because it's great
[Catalyst, Mojolicious, Dancer, Dancer2, Raisin..]
You will note from this list that the latest framework will have changed by the
time you finally get there... and it still takes a long time for it to be stable.

| have seen multiple projects fail with this approach. “Big Bang” project often == Big Bang

Gradual approach - expert led

Get an expert in - a few examples, plenty of others! Ask around

Gabor Szabo https://perlmaven.com/ Dave Cross https://davorg.dev/ Andrei
Shitov https://andrewshitov.com/ Curtis “Ovid” Poe https://ovid.qgithub.io/ John
Napiorkorwski https://www.linkedin.com/in/jnapiorkowski/

Ask them to

e [temise and assess what you have
e Advise on best new tech to use
e Figure out how to leverage your existing production quality code

https://perlmaven.com/
https://davorg.dev/
https://andrewshitov.com/
https://ovid.github.io/
https://www.linkedin.com/in/jnapiorkowski/

What we did

| went via Matt Geppert https://www.linkedin.com/in/mattgeppert/ a UK
recruiter I've used often, who runs Open Select Recruitment
https://www.osrecruit.com/

And hired Dave Lambley https://www.linkedin.com/in/dave-lambley-992a263/
Dave helped us sort it all out.

Here's one of his talks. Don't know who he's mentioning.
https://archive.fosdem.org/2018/schedule/event/software_necromancy/

https://www.linkedin.com/in/mattgeppert/
https://www.osrecruit.com/
https://www.linkedin.com/in/dave-lambley-992a263/
https://archive.fosdem.org/2018/schedule/event/software_necromancy/

If you find yourself in a hole, stop digging

New tech stack:

e Microservice APl backends using Dancer2
https://metacpan.org/pod/dancer?2 or Raisin

https://metacpan.org/pod/Raisin

e New Ul using ReactJS and node.js

All major future new development uses new stack.
Only maintenance and small changes with old
stack.

An excavator that is in a hole, and =~
per the Law of Holes, has stopped

digging.

https://en.wikipedia.org/wiki/Law_of_holes

https://metacpan.org/pod/dancer2
https://metacpan.org/pod/Raisin
https://en.wikipedia.org/wiki/Law_of_holes

Using Modern Perl - some resources

e The Modern Perl book by Chromatic:
http://www.modernperlbooks.com/books/modern_perl_2016/index.html
https://github.com/chromatic/modern_perl_book/

e Perl Maven https://perlmaven.com/ by Gabor Szabo

e Resources at https://learn.perl.org/

e Perl Best Practices as reflected in perlcritic
https://metacpan.org/pod/perlcritic

e Recommended modules for Enlightened Perl
https://metacpan.org/pod/Task::Kensho

http://www.modernperlbooks.com/books/modern_perl_2016/index.html
https://github.com/chromatic/modern_perl_book/
https://perlmaven.com/
https://learn.perl.org/
https://metacpan.org/pod/perlcritic
https://metacpan.org/pod/Task::Kensho

third party React front endUl Classic Web
mobile apps Single Page Application Talisman
u W u and job boards

CSS, JavaScript, React (Facebook), Redux +

other libraries - webpack

single initial loader .html
then subsequenttly page re-renderered inline
e p re C a e O without web server HTML redisplay - all rendered client-side

benefits speed onintermittent networks. works better on mobile

stack? s

Talisman APls
REST interface
defined in swagger.io

GET, PUT, POST, DELETE

A system architecture oad balancer

firewall DDCI)S protection
diagram | created to help S— '

caching proxy
(integrates to Identity Access Manager to

Vl S u a I | S e t h e "'to b e" S't ate . inject session auth.entication headers)

/

web server Reaqt templates apache2
apache2 lazily loaded proxy
web server from web server cache
Apache2 (.js files) server - CGl or mod_perl
Plack layer
. . components like
The red circled part is what Plack laer authentication
U 5 caching
we'll look at today: outside the perl backend
L. plack_loader.pscgi
Modernising the legacy CGlI to run on Feg)
: —> /
Plack and remove apache 1 + —— WeB TalsTan badkend
Dancer 2 code supporting
m Od_pel’| 1 compatible with PSGI round trip HTML pages
interface (replacing CGl) TW3.0
UWSCGI in the Ruby world TW4.0 1

What do we mean by old perl?

Versions shipped by Red Hat: we used RH 7, 9 then, later RHEL 2, 3, 5, 7, Rocky
Linux 8

1999 perl 5.005, legacy C-ISAM database

2002 perl 5.8.0 was problematic with utf-8

2003 perl 5.8.1 this is where a lot of our code got “parked”, legacy + MySQL 3.x
2008 perl 5.8.8

2014 perl 5.16.3 ships with RHEL7, legacy + MySQL 5.x

2003, rewrote much early code to run under mod_perl1 with Apache::PerlRun

Mod_perl1 porting guidelines for CGI code

e use strict; use warnings; # mea culpa, mea maxima culpa
update the header
e Local variables my Sx -> our Sx
e Use braces to create scope to remove code from scope after execution

{

... old code goes here, will now get run on next invocation
}
e Replace globals and procedural code with objects
- but it may be impractical if there is too much
e Garbage collection, mod_perl 1: end of execution hook: release locks and other resources

https://perl.apache.org/docs/1.0/guide/

Mod_perl1 porting guidelines for CGI code

e use strict; use warnings; # mea culpa, mea maxima culpa
update the header
e Local variables my Sx -> our Sx
e Use braces to create scope to remove code from scope after execution

{

... old code goes here, will now get run on next invocation
}
e Replace globals and procedural code with objects
- but it may be impractical if there is too much
e Garbage collection, mod_perl 1: end of execution hook: release locks and other resources

https://perl.apache.org/docs/1.0/guide/

APACHE

How did apache 1 work?

/etc/httpd/conf/httpd.conf
ScriptAlias /cgi-bin/ "/var/www/cgi-bin/"

apache sees a file with .cgi extension and executes it
this means many entry points

/var/www/cgi-bin/tal_dev4/cgi/
bookings/list.cgi, bookings/view.cgi, bookings/amend.cgqi, ...
candidate/list.cqgi, candidate/view.cqi, ...

600 scripts later

mod_perl

This was the perl interpreter compiled with the apache1 C code into a single
binary to execute scripts without the perl binary load time overhead.

We already had a lot of CGI scripts and not enough time to rewrite to use
Apache::Registry. We used Apache::PerlRun to read the scripts into memory
and fake a CGI environment for them to run in.

We put a system apache 2 as front end proxy in front.

It ran a lot faster and was solid for the past 20 years. We couldn't justify the
cost of rewriting it to mod_perl2 in 2005... another compromise.

mod_perl

This was the perl interpreter compiled with the apache1 C code into a single
binary to execute scripts without the perl binary load time overhead.

We already had a lot of CGI scripts and not enough time to rewrite to use
Apache::Registry. We used Apache::PerlRun to read the scripts into memory
and fake a CGI environment for them to run in.

We put a system apache 2 as front end proxy in front.

It ran a lot faster and was solid for the past 20 years. We couldn't justify the
cost of rewriting it to mod_perl2 in 2005... another compromise.

CGl.pm HAS BEEN REMOVED FROM THE PERL CORE

http://perl5.qgit.perl.org/perl.git/commitdiff/e9fa5a80

O b S O I e S C e n C e If you upgrade to a new version of perl or if you rely on a system or vendor perl and

get an updated version of perl through a system update, then you will have to install

(N O‘t O I d p ro g ra m m e r S :_) CGl.pm yourself with cpan/cpanm/a vendor package/manually. To make this a little
easier the CGl::Fast module has been split into its own distribution, meaning you do
not need access to a compiler to install CGl.pm

The rationale for this decision is that CGl.pm is no longer considered good practice

CGl.pm is discouraged from use
and getting apache1 + mod_perl1 to compile on Red Hat Enterprise Linux 7

| had to modify the apache1 C code. Getting it to compile and run without
segmentation violations was “quite tricky”.

We decided it had to go and be replaced with Plack, before we moved to Rocky
Linux 8, in case Bad Things Happened.

Moving CGl to Plack

With a modern framework, you have a single persistent entry point on a master
server that routes web requests and calls the correct class and method to

process it.

We can fake that, without rewriting all those old scripts, by using
Plack::App::CGIBin to map the web request URL path to script files.
This reads them into memory and then eval()s on each web request.

https://metacpan.org/pod/Plack::App::CGIBin

Using SSO and SSO proxy instead of apache 2

front end proxy

We added on the front end Gluu https://gluu.org/single-sign-on/ SSO for people
to login (replacing the old perl login web form, though that remained as an
option for when directly logging in to the server not via SSO).

We front it with nginx as a master router.
Gluu SSO proxy replaces old apache 2 front end to route authorised requests.
Gluu uses apache 2 as its proxy server inside a docker container.

In the old world we used cookies for user and session for authentication.
In the new world, it is different..

https://gluu.org/single-sign-on/

SSO proxy configuration - authentication header

We pass web headers OIDC-CLAIM-EMAIL and OIDC-CLAIM-SUB to the backend as auth.
Changed the framework to allow auto-login for matching user if IP origin was SSO proxy.

/opt/iam/psgis/apache-docker-tal-qa-psgi/httpd/conf/extra/httpd-ssl.conf
<VirtualHost _default_:443>

ReWriteEngine On
RequestHeader set OIDC-CLAIM-EMAIL "expr=%{ENV:OIDC_CLAIM_email}"
RequestHeader set OIDC-CLAIM-SUB "expr=%{ENV:0OIDC_CLAIM_sub}"

SSO proxy configuration - routing

We route /cgi-{bin,perl}/ requests to the Plack backend legacy CGl service, here port 24001
/opt/iam/psgis/apache-docker-tal-qa-psgi/httpd/conf/extra/httpd-ssl.conf

redirect / to default cgi/home.cgi
ReWriteRule /S http://52.56.93.98:24001/cgi-bin/tal_qa/cgi/home.cgi [P]

proxy /cgi-bin/ and /cgi-perl/ requests to Plack backend service on qa server
to run older code

ReWriteRule */cgi-bin/(.*S) http://52.56.93.98:24001/cgi-bin/$1 [P]
ReWriteRule */cgi-perl/(.*S) http://52.56.93.98:24001/cgi-bin/$1 [P]

SSO proxy configuration - routing 2

Static assets remain served by apache2 port 80 on same server as backend
/opt/iam/psgis/apache-docker-tal-qa-psgi/httpd/conf/extra/httpd-ssl.conf

static assets served by apache 2 on ga server

ReWriteRule */tal/(.*$) http://52.56.93.98/tal/$1 [P]

ReWriteRule */icons/(.*S) http://52.56.93.98/icons/S$1 [P]

SSO proxy configuration - routing 3

New backend API is routed to TWAPI service, here port 17339
/opt/iam/psgis/apache-docker-tal-qa-psgi/httpd/conf/extra/httpd-ssl.conf
TWAPI - Raisin API service to run newer code, also under Plack
<Location /apiclient/twapi/tal-qa/>
AuthType auth-openid
OIDCUNnAuthAction 401
ProxyPass http://52.56.93.98:17339/
ProxyPassReverse http://52.56.93.98:17339/
</Location>

ProxyPassReverse / http://52.56.93.98/

http://52.56.93.98:17339/
http://52.56.93.98:17339/

Plack psgi loader

This provides the service point referenced above
http://52.56.93.98:24001/cgi-bin/S$1
We have a main entry point

{Application root}/cgi/plack_loader.psgi

How we run it - manually

We can run it as a development standalone server
S cd /var/wwwy/cgi-bin/tal_qga/cgi

S plackup plack_loader.psgi

(defaults to listening at localhost port 5000)

to run with the perl debugger you need invoke plackup, not the .psgi

S perl -d /usr/local/bin/plackup plack_loader.psgi

You can also start the debugger from VSCode by passing psgi filename arg
https:/marketplace.visualstudio.com/items?itemName=richterger.perl

https://marketplace.visualstudio.com/items?itemName=richterger.perl

How we run it - from systemd

Normally we start it as a service using a systemd unit to run under Starman
PSGI web server

S systemctl status tal-psgi@tal_qa.service
o tal-psgi@tal_qa.service - Start Talisman PSGI service for tal_ga
Loaded: loaded (/usr/lib/systemd/system/tal-psgi@.service; disabled; vendor preset: disabled)
Active: active (running) since Mon 2023-08-14 02:03:03 BST; 10h ago
Process: 22044 ExecStart=/usr/local/bin/plackup --port SPORT --workers SWORKERS --daemonize
--access-log=S${LOGPREFIX}_access.log --error-log=${LOGPREFIX}_error.log
--pid=${LOGPREFIX}_server.pid -a ${BASEDIR}/%i/cgi/plack_loader.psgi (code=exited, status=0/SUCCESS)
Main PID: 22045 (starman master)
CGroup: /system.slice/system-tal\x2dpsgi.slice/tal-psgi@tal_qga.service
22045 starman master
22046 starman worker
22047 starman worker ...

Systemd environment file

S cat /etc/sysconfig/tal-psgi/tal_ga
BASEDIR=/var/www/cgi-bin

PORT=24001

WORKERS=5

PLACK_SERVER=Starman
PLACK_ENV=production

AREA=tal_qga
LOGPREFIX=/beacon/logs/tal-psgi/tal_qga

Systemd unit

S cat /usr/lib/systemd/system/tal-psgi@.service
[Unit]

Description=Start Talisman PSGI service for %i
After=syslog.target network-online.target
Wants=network-online.target

[Service]

Type=forking

Restart=on-failure

RestartSec=5

EnvironmentFile=/etc/sysconfig/tal-psgi/%i

ExecStart=/usr/local/bin/plackup --port SPORT --workers SWORKERS --daemonize
—access-log=S{LOGPREFIX}_access.log --error-log=S{LOGPREFIX}_error.log --pid=S{LOGPREFIX}_server.pid -a
S{BASEDIR}/%i/cgi/plack_loader.psgi

[Install]
WantedBy=multi-user.target

In the plack_loader.psgi script

We use these to provide the legacy CGI web service:

- Plack PSGI toolkit

- Plack::App::CGIBin as a cgi-bin replacement

uses CGl::Compile to read and cache perl scripts into subs (like ModPerl::Registry)
and then run it as a persistent application using CGIl::Emulate::PSGI

- Plack::App::MCCS to serve static assets

- Plack::Builder

Inside a builder block we map an apache ExecCGl /cgi-bin/AREA path to
Plack::App::CGIBin for later execution.

https://metacpan.org/pod/Plack
https://metacpan.org/pod/Plack::App::CGIBin
https://metacpan.org/pod/CGI::Compile
https://metacpan.org/dist/mod_perl/view/docs/api/ModPerl/Registry.pod
https://metacpan.org/pod/CGI::Emulate::PSGI
https://metacpan.org/pod/Plack::App::MCCS
https://metacpan.org/pod/Plack::Builder

use strict;

use warnings;

use Beacon::TalPath qw/TalPath/;
use Plack;

use CGl::Compile;

use Plack::Builder:;

use Plack::App::MCCS;
use Plack::App::CGIBin;
use File::Basename qw();

sub should run_with_child_exec_perl {

my $file = shift // ;

$SENV{SCRIPT FILENAME} = %file; # so Talsettings::calc_appfile_path() can find cgi
root directory

my $scriptdir = File::Basename::dirname($file);
chdir($scriptdir) || die "cannot change to CGlI script directory $scriptdir: $!";
... returns boolean whether we need to fork a new perl child each time

}

EXAMPLE OF an init hook before Talisman code
{

my $orig = *CGl::initialize _globals{CODE};

no warnings redefine’;

*CGl:initialize _globals = sub {

print STDERR "CGl::initialize _globals()\n";
<<do something here>>

&Sorig;

)

}

CGl::Compile does not have a register _cleanup hook like mod_perl1
so wrap its serve path method to call Talisman cleanup if it exists
{
my $orig = *Plack::App::CGIBin::serve_path{CODE};
no warnings ‘redefine’;
*Plack::App::CGIBin::serve path = sub {
my @results = &$orig(@_);
Tal::Common::sm_End() if defined &Tal::Common::sm_End; # Talisman cleanup
return @results; # HTTP response header, content

my $rootdir = TalPath(); # e.g. /var/www/cgi-bin/tal_pe

my $area = SENV{PLACK TAL AREA} # if set in systemd environment file use that
|| pop [split /', $rootdir] # otherwise work out area name from rootdir e.g. tal_pe
|| die 'cannot locate area from rootdir .$rootdir;

print STDERR "plack loader.psgi running under rootdir [$rootdir] area [$areal\n";

builder {
enable 'Plack::Middleware::MCCS', path => qr{/*icons/}, root =>

'fusr/share/httpd/icons/"; # alternative
mount "/icons' => Plack::App::MCCS->new(# /usr/share/httpd/icons/apache_pb.gif
root => 'fusr/share/httpd/icons’,
defaults => { etag => 0, cache_control => ['no-cache'], compress => 0 },
)->to_app;

automatically load, compile and run perl scripts
e.g. http://localhost:5000/cgi-bin/tal _dev4/cgi/candidate/view.cgi/10234
-> execute code in /var/www/cgi-bin/tal_dev4/cgi/candidate/view.cqi
mount "/cgi-bin/$area/cgi" => builder {

Plack::App::CGIBin->new(

root => "/var/www/cgi-bin/$area/cgi",
exec cb =>\&should run_with child_exec perl,
)->to_app;
%

how to mount a URL for a single perl script
#mount ‘/cgi-bin/tal_dev4/cgi/advancel/list.cgi' => Plack::App::WrapCGI->new(script =>

"advance/list.cgi")->to_app;
PATH_INFOQ '/tal_dev4/cgi/advance/list.cgi
REQUEST _URI /cgi-bin/tal_dev4/cgi/advance/list.cgi’

default static serve everything else below root /
mount /' => Plack::App::MCCS->new(

root => '/var/www/html',

defaults => { etag => 0, cache_control => ['no-cache’], compress => 0 },
)->to_app;

how to proxy static file serving to a shared central server
#mount '/, Plack::App::Proxy->new(remote => 'http://localhost/')->to_app,
#mount '/icons’, Plack::App::Proxy->new(remote => 'http://localhost/icons')->to_app,

#!/usr/bin/perl -w

bookingpay/amend.cqi
%I% %D%

use strict;

$rW = 1;

package main;

use lib ("..", "../pmtal", "../pmsys", SENV{PERLMOD_TAL}||"/usr/local/perimod/tal",
$SENV{PERLMOD _SYS}||"/usr/local/perlmod/sys");

use vars qw($VERSION); SVERSION = do { my @r = (g$Revision: %% $ =~ N\d+/q); sprintf
"%d."."%02d" x $#r, (@r?@r:0) }; # must be all one line, for MakeMaker

#!/usr/bin/env perl

vim:ts=3:shiftwidth=3:expandtab
use strict;

use warnings;

package main; # some legacy system modules expect to be in global namespace

use Beacon::TalPath; # not FindBin::Real as it gets confused by Plack and CGl::Compile wrapper
use lib "$Beacon::TalPath::Bin/cgi"; # needed for Plack and VSCode perl debugger as it runs from
a different directory

use TalSyntax; # set strictures, turn on features, add lib paths, use standard Talisman modules

Common include header

This is something | wished I'd known about earlier, before editing 600+ .cgi
scripts.

John Napiorkowski
https://dev.to/jjn1056/using-modern-perl-features-in-your-projects-4e7m

'l create a ::Syntax’ module in the root of my project namespace and use that to
setup all the features | want."

https://dev.to/jjn1056/using-modern-perl-features-in-your-projects-4e7m

package TalSyntax;

use strict;

use warnings;

use Import::Into; # works from perl 5.006
use Module::Runtime; # works from perl 5.006

FindBin gets confused by Plack and CGl::Compile wrapper so use Beacon::TalPath

use Beacon::TalPath; # needed to work across Plack + CGl::Compile, mod_perl, CGl, interactive
use lib "$Beacon::TalPath::Bin/cgi";

use lib "$Beacon::TalPath::Bin/cgi/pmtal";

use lib "$Beacon::TalPath::Bin/cgi/pmsys";

use lib "$Beacon::TalPath::Bin/cgi/am";

use lib "$Beacon::TalPath::Bin/cgi/document/Module";

standard use declarations to apply in header of all modules
sub importables {
my ($class) = @_;
return (
Features/pragmas
'utf8',
'strict’,
'‘warnings',
[feature’, :5.16"], # see https://perldoc.perl.org/feature, turns on the following features
bareword_filehandles current_sub evalbytes
fc indirect multidimensional say state
switch unicode_eval unicode_strings

#['feature’, 'say'], # if you want a specific feature
#['experimental', 'signatures’, 'postderef'], # needs perl 5.20.0 and later, our base standard was 5.16.3

Modules. These were imported previously in a worse way by pmtal/Tal.pm into the 'main' namespace

"Tal::

GlobalVars',

"Talsettings',

Tal,

"Tal::
"Tal::
"Tal::
"Tal::
"Tal::
"Tal::
"Tal::
"Tal::

"Tal:

Common’,
Browser’,
Date’,
Display’,
SQL',
Script',
Security',
User',

:Utility',

sub import {
my ($class, @args) = @_;
my $caller = caller;
foreach my $import_proto($class->importables) {
my ($module, @args) = (ref($import_proto)||") eq 'ARRAY" ?
@$%import_proto : ($import_proto, ());
Module::Runtime::use _module($module)
->import::into($caller, @args)
}
}

<|IfModule mod_rewrite.c>
<VirtualHost *:80>
Include /etc/httpd/conf.d/proxy_rules.inc

run tal_dev4 accounts framework under apache2 cgi-bin exec perl

RewriteRule Alcgi-perl/tal_dev4/cgi/accounts/(.*$)
http://localhost:80/cgi-bin/tal_dev4/cgi/accounts/$1 [L,P]

RewriteRule Alcgi-perl/tal_dev4/cgi/customer/(.*$)
http://localhost:80/cgi-bin/tal_dev4/cgi/customer/$1 [L,P]

in plack loader.psgi
Plack::App::CGIBin->new(
root => "/var/www/cgi-bin/$area/cgi",
exec cb =>\&should run_with child _exec perl,
)->to_app;

sub should run_with_child_exec_perl {
my $file = shift // ;

unsafe programs need child exec perl
if ($file =~ m{
(
cgi/accounts/
| cgi/customer/

X)

{

$should_exec = 1;
}
for other .pl and .cgi files, run persistently in this perl via a CGl wrapper
elsif ($file =~m/(.cqil.pl)$/)
{

$should_exec = 0;

1.

Finding application root

| mentioned we wrote a module Beacon::TalPath to work out application root.

You have a few options:

1.
2.
3

systemd environment to set PERLSLIB or application root directory APPDIR.
Equivalent of apache config: PerlSetEnv MYLIB /srv/http/site/apps/thisone/lib

Relative to main app file: use File::Basename; use lib dirname(_FILE__);

For our legacy framework, it expects SENV{SCRIPT_FILENAME} so we set that in
plack_loader.psgi based off exec_cb callback (which is passed file path)

For CGIl or mod_perl1 with Apache::PerlRun - FindBin::Real::Bin() - breaks under
Plack and CGl::Compile as SO is not what FindBin::Real expects

Other changes needed for CGl::Compile

Remove unneeded globals

Remember you have to reset them every run. They will persist the previous run's
value leading to unpredictable failures if you are not careful. Why risk it?

my $booking no;

sub run {
$booking no ||= CGI->new->multi_param(‘booking_no’); # oops, got last run value

Other changes needed for CGl::Compile

Replace 'my' lexicals with 'our’ package globals.
https://metacpan.org/pod/CGl::Compile

“If your CGI script has a subroutine that references the lexical scope variable

outside the subroutine, you'll see warnings such as:
Variable "Sq" is not available at ...
Variable "Scounter” will not stay shared at ...

Thisisduetot
solve this, you
replace my wit

ne way this module compiles the whole script into a big sub. To
nave to update your code to pass around the lexical variables, or

N our. See also

http://perl.apache.orqg/docs/1.0/quide/porting.htm|#The_First_Mystery for

more details.”

https://metacpan.org/pod/CGI::Compile
http://perl.apache.org/docs/1.0/guide/porting.html#The_First_Mystery

#!/usr/bin/perl -w
timesheets/attach.cqgi
%1% %D%

use strict;
AW = 1;

package main;

use lib ("..", "../omtal", "../pmsys", SENV{PERLMOD _TAL}||"/usr/local/perimod/tal",
$ENV{PERLMOD_SYS}||"/usr/local/perlmod/sys");

use vars qw($VERSION); $VERSION = do { my @r = (g$Revision: %1% $ =~ Nd+/g); sprintf "%d."."%02d" x
$#r, (@r?@r:0) }; # must be all one line, for MakeMaker

use Tal;

use Tal::List;

use timesheets::sm_timesheets;

use tsimage::ListTSImage;

use Document;
use View::Slcust;
require '../timesheets/display _common.pl’;

require '../timesheets/display timesheet.pl’;
require '../timesheets/read_timesheet.pl’;
sm_Common ();

sm_PrintHead ("Attach Image To Timesheet");
sm_PrintBody ();

#!/usr/bin/perl -w
timesheets/attach.cgi
package main;

use Beacon::TalPath; # not FindBin as it gets confused by Plack and CGl::Compile
wrapper

use lib "$Beacon::TalPath::Bin/cgi"; # needed for Plack and VSCode perl debugger as it
runs from a different directory

use TalSyntax; # set strictures, turn on features and use standard Talisman modules

use Tal::List;
use timesheets::sm_timesheets;

use Document;

use View::Slcust;

code moved into timesheets::Common
#require '../timesheets/display_common.pl’;
#require '../timesheets/display_timesheet.pl’;
#require '../timesheets/read_timesheet.pl’;
use vars qw(%tc);

use timesheets::Common:;

globals the .pl files previously created, now declared as package globals
our ($timesheet_no, $surname, $serial_code, $serial_multi, $doctype, $Sbutton,
$multi_image,

$image cur_image, $lookfor, $timesheet _no_key, $timesheet_keys);

code moved inside block to ensure it is run when CGIl::Compile re-runs it
{ Mustbe in block or it won't run again next time

sm_Common ();

sm_PrintHead ("Attach Image To Timesheet");

sm_PrintBody ();

That's it! Any questions?

Thanks.

nttps://www.talisman.tech/
nttps://linkedin.com/in/peteredwards/
nttp://dragonstaff.co.uk/perl/ - link to slides is here

PerlKohaCon, Helsinki Aug 15th 2023

https://www.talisman.tech/
https://linkedin.com/in/peteredwards/
http://dragonstaff.co.uk/perl/

